Introduction to 3D Game Programming
with DirectX 9.0c: A Shader Approach

Part I Solutions

Note 1: Please email to frank(@moon-labs.com if you find any errors.

Note 2: Use only after you have tried, and struggled with, the problems yourself.

Chapter 1 Vector Algebra

1. Let i =(1,2,0) and v=(3,-4,0). Compute &i+V, #—v, 2i+1/2v,and —2ii +v

and draw the vectors relative to a coordinate system.

*:(1 2,0)+(3,-4,0)=(1+3,2+(—4),0+0)=(4,-2,0)
v =(1,2,0)-(3,-4,0)=(1-3,2—(-4),0-0)=(-2,6,0)
2u+1/2v: (1,2,0)+1/2(3,-4,0)=(2+3/2,4+(-2),0+0)=(7/2,2,0)
—2ﬁ+\7:—2(1,2,0)+(3,—4,0):(—2+3,—4+(—4),0+O):(1,—8,0)

+¥
(—2,6,0)

(7f2. 2,04

+X

(4,-2,0)

(1, -810)

Frank Luna Page 1 6/17/2006



2. Let ii=(-2,1,4) and v =(3,-4,1). Normalize & and v .

Ca (21,4 (2,1,4)_[ 2 1 4 j

] / 1+ 42 J21 V21721721
LV 3 ~4,1) (3,—4,1) ( 3 4 1 j
V =on = ) ’

EE +(-4)" +1 V26 V26726726

3. Show ﬁ/ ||L7|| has a length of one unit. (Hint: Compute the length of ﬁ/ ||L7 || )

The length of i/ |l = (u, /| u, /i w. /i) is given by:

2 2 2 P q
\/[u_J {”_yJ +(u_} I R i S L
— — — —12 7
)l ) lal ] Wl

4. Is the angle between u and v orthogonal, acute, or obtuse?

a. u=(111),v=(2,22)
bﬁ:(llo) v=(-2,2,0)
c. ii=(~1,-1,-1), ¥=(3,1,0)

Use the geometric properties of the dot product given on page 10:

(1,1,1)-(2,2,2)=1-2+1-2+1-2=6>0= acute angle
(l,1,0)~(—2,2,0)=1-(—2)+1-2+0-0=O:> orthogonal
(-1,-1,-1)-(3,1,0)=(=1)-3+(~1)-1+(-1)-0=—4 < 0= obtuse angle

5.Letu= (—2, 1, 4) and v = (3, -4, 1) . Find the angle € between u and v .

Use Equation 1.4:
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cosd = i”i
1]
0 =cos™ ?Vi
]
gt (21.4)(3-4.1)
\/(—2)2 +12 + 42 \/32 +(-4) + 12
0 =cos 20414
V21426
-6
9: -1
cos N
0 ~104.88°

6. Let u= (u u,,u, ,\7=(v 12 vz),andw (w w, wz) show that the following

x> Ly

properties are true for R*:

1
1

a. U-v=v-u

b u-(V+w)=u-V+i-w

c. k(i-v)=(kii)-v =a-(kv)
dv-v=|p

e. 0-v=0

(Hint: Just use the definition, for example,

V-V =V vy vy, =V vy ] :(\/V +v, ) :(”V”)

a)

u v=(ux,uy,uz)-(vx,vy,vz)
=uv tuy, +uy,
=V, VU, VU,

(vx,vy,vz)-(ux,uy,uz)
=V-u
b)
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ﬁ.(\7+ = uv,u),u [v v, vz w,wy,wz)}
(ux,uy,uz) (v W,V WLV, +w)
=u (v, +w )+u_(v +w )+u (v.+w,)

V+MW +MV +MW+MV +MW

u,
( +u,v +uzvz)+(uxwx +u,w, +uzwz)

Uu-v+u-w

k(u-v)= k(uxvx +u,v, +uzvz)
=hkuv, +kuyv, +kuv,
= (kux)vx +(kuy)vy +(kuz)vz

=(kii)-v

k(i-v)= k(uxvx +u,v, +uzvz)
=hkuyv, +kuyv, +ku.v,

X

=ux(kvx)+uy(kvy)+uz(kvz)

d)

V=V Y HV Y vy, = v+ V; +V = (\/T) - (”V")

e 0:5=(0,0,0):(v,,v,,v.)=0v,+0v,+0v. =0

<

7. Use the Law of Cosines (¢* = a” +b° —2abcos 8, where a, b, and c are the lengths of
the sides of a triangle and @ is the angle between sides a and b) to show

2 2 —112
, a’ =i

uv, +uyvy +u,v, = ||u||||v

and b =|v[,

b

and use the dot product properties from the previous exercise.)

=}

e = -l
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The figure shows the setup, then by the Law of Cosines:

¢t =a® +b*—2abcosO
| =l + (7" - 2]]|[7]cos 6
(it =¥)- (i =) =il + 7] - 2[] 7] cos &
i —2(a-v)+v-v =il +] - 2[a][7]cos 6
Jall" =2 -5)+ 5] =l + (7" - 2{a||#|cos &
—2(1,7 7) =27 cos 0

v) =][7]cos &

uyv, tuy, +uy, = ||u|| ||v|| cosd

8.Let v=(4,3,0) and 7 = (2/\/— l/\/— O) Show that 7 is a unit vector and find the

orthogonal projection, p, of v on 7. Then find a vector w orthogonal to 7 such that
v = p+w. (Hint: Draw the vectors for insight, what does v — p look like?)

We have,

Jil=(2/5) + (15) + (o) = ErT =+ =1.

So 7 is a unit vector. To find the projection, we use the equation below Figure 1.8:

If v=p+w,then w=v—-p=(4,30)-(2,1,0)=(2,2,0)-(2,1,0)=(2,4,0).
Moreover, because (2, 4, O)-(%,%, 0) =—%%+57 =0, we have that w is orthogonal

to n.

9.Let i =(-2,1,4) and v=(3,-4,1). Find w=uxV, and show w-1 =0 and w-v=0.
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Apply Equation 1.5:

L7><\7:(—2, 1,4)><(3,—4,1)
=(1-1-4-(-4),4-3-(-2)-1,-2(-4)-1-3)
=(17,14,5)

weii =(17,14,5)-(-2,1,4)=-2-17+14-1+5-4=0

wv =(17,14,5)(3,-4,1)=17-3-4-14+5-1=0

10. Let the following points define a triangle relative to some coordinate system:
A= (0, 0, 0) , B= (0, 1, 3) , and C= (5, 1, 0) . Find a vector orthogonal to this triangle.

(Hint: Find two vectors on two of the triangle’s edges and use the cross product.)

The two vectors on the edges of the triangle are:

Then a vector orthogonal to this triangle is given by:
Uuxv :(0, 1 3)><(5, 1, 0) :(—3, 15, —5) .

11. Suppose that we have frames 4 and B. Let p, =(1,-2,0) and g, =(1,2,0)
represent a point and force, respectively, relative to frame 4. Moreover, let
0=(-6,2,0), i =(1/2,1/¥2,0), ¥ =(-1/v/2,1/4/2,0), and #%=(0,0,1) describe
frame A relative to frame B. Find p, = (x, A z) and g, = (x, A z) that describe the

point and force relative to frame B.

Py =i =25 +0W+0=(5+35-6,5-%+2,0)=(242, 221 o)
Gy =i +25+ 0% =(5-%, % +%,0)=(,%,0)

12. Let p(¢)=(1,1)+7(2,1) be a ray relative to some coordinate system. Plot the points
on the ray at = 0.0, 0.5, 1.0, 2.0, and 5.0.

The points are:
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And the plot:

+7

(11,6)

(32) (5,3
(1L1) o "

© (23 oy

13. Let p, and p, define the endpoints of a line segment. Show that the equation for a
line segment can also be written as p(¢)=(1-1) p, +p, for 1€[0,1].

ﬁ(t) = ﬁo +t(i’1 _1_50): i’o +tl_51 _tﬁo = (l_t)l_io +tpl
14. Rewrite the program in §1.8 twice; first using 2D vectors (D3DXVECTORZ2) and
second using 4D vectors (D3DXVECTOR4). (Hint: Search the index for these keywords
in the DirectX SDK documentation: D3DXVECTOR2, D3DXVECTOR4, D3DXVec?2, and

D3DXVec4.)

We rewrite the program using D3DXVECTORZ2; the other case is analogous.

#include <d3dx9.h>
#include <iostream>
using namespace std;

// Overload the "<<" operators so that we can use cout to
// output D3DXVECTOR2 objects.

ostreamé& operator<<(ostreamé& os, D3DXVECTOR2& V)
{

08 << "(" KK Vv.x << ", " K< vy << "),
return os;

}

int main ()

{
// Using constructor, D3DXVECTOR2 (FLOAT x, FLOAT vy);
D3DXVECTOR2 u(l1.0f, 2.0f);
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// Using constructor, D3DXVECTOR2 (CONST FLOAT *);
float x[2] = {-2.0f, 1.0f};
D3DXVECTOR2 v (X) ;

// Using default constructor, D3DXVECTOR2 () ;
D3DXVECTOR2 a, b, c, d;

// Vector addition: D3DXVECTOR2 operator +
a=u+ vy

// Vector subtraction: D3DXVECTOR2 operator -
Ip = uw = vg

// Scalar multiplication: D3DXVECTOR2 operator *
c =u * 10;

/7 |luall
float length = D3DXVec2Length (&u) ;

// d=u/ |lull
D3DXVec2Normalize (&d, &u);

// s = u dot v
float s = D3DXVec2Dot (&u, &v);

cout << "u = " << u << endl;
cout << "v = " << v << endl;
cout << "a = " << a << endl;
cout << "b = " << b << endl;
cout << "¢ = " << ¢ << endl;
cout << "d = " << d << endl;

cout << "||ul|
cout << "u dot v =

" << length << endl;
<< s << endl;

return 0;

Chapter 2 Matrix Algebra

1. Let
3 0 00 1 0 0 O
0 -2 0 0 0 1 0 0 -
S = , T = ,andu=[2 -1 1 1].
0 0 40 0 0 1 0
0 0 0 1 2 -5 -1 1

Compute the following matrix products: ST, 7S, uS, uT , and z](ST ) Does ST =787

Just use the definition of matrix multiplication (i.e., Equation 2.1):
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30 0 0]1 0 0 O] 3 0 0 O]
ST0200H01000200
0 0 4 0/l0 0 1 0/ 1|0 0 4 0
0 0 0 1|2 -5 -1 1] |2 -5 -1 1]
1 0 0 O3 0 0 0] [3 0 0 O]
TS0100H02000200
0 0 1 Ofl0 0 4 0| [0 O 4 0
2 -5 -1 1Jl0 0 0 1| |6 10 —4 1]
30 00
as =[2 111]{0 200}[6241]
0 0 4 0
0 0 0 1
1 0 0 O
ar =[2 111][0 R S PR Y
0 0 1 0
2 -5 -1 1
30 0 0][1 0 0 O
i(ST)=|2 —111]0_2000 : OO:[8—331]
0 0 4 0/l0 0 1 0
0 0 0 1/|2 =5 -1 1

ST #TS.
2. Show L?\7=[ux, u, uZ] v, =U-v.

The notation #v means the product of a 1x3 row vector # with a 3x1 column vector v
so that the matrix product is defined. By the definition of matrix multiplication we have
that the product of a 1x3 matrix with a 3x1 matrix is a 1x1 matrix; we can think of a
Ix1 matrix as just a scalar. Applying Equation 2.1 we obtain:

1%

X
[ux, u, uz] v, |= [uxvx +u,v, +usz] =uy, Uy, +uy, =u-v

1%

z

This exercise simply shows that we can express a dot product in matrix notation using
matrix multiplication.
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3. Using S and T from Exercise 1, compute S”, T, and (ST)T. What is (ST )T and

(77} 2 Does (ST) =T75"?

T

30 00 3 0 00

; |0 =2 0 0 0 -2 0 0
S - = = S

0 0 40 0 0 40

0 0 0 1 0 0 0 1

Observe for this special matrix, S” =S. When a matrix equals its transpose, the matrix
is said to by symmetric.

T

1 0 0 0 1 00 2
101 0 0 010 -5
T= =
00 1 0 00 1 -1
2 -5 -1 1 00 0 1
30 0 0] [3 0 0 2
10 =2 0 0 0 2 0 -5
(ST) = =
0 0 4 0 0 0 4 -1
2 -5 1 1 0 0 0 1
- ™\' T
30 0 0 30 00 30 00
[0 =2 00 0 2 0 0 0 2 0 0
(s7) = - - =5
0 0 4 0 0 0 4 0 0 0 4 0
0 0 01 0 0 0 1 0 0 0 1
- ™\, T
1 0 0 0 1 00 2 1 0 0 0
A~ [0 1 0 0 010 -5 01 0 0
(") = - : -7
00 1 0 00 1 -1 00 1 0
2 -5 -1 1 00 0 1 2 -5 -1 1

So if we take one transpose, we interchange the rows and columns. If we take another
transpose, we interchange the rows and columns again and end up back to where we
started.
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100 23 0 00][3 0 0 2
010 -5[0 2 0 0] [0 20 -5
T's" = = =(sT)'
001 -1/[0 0 4 0] |0 0 4 -1
000 1]0 0 0 1] |0 0 0 1

4. Using S and T from Exercise 1, verify that (ST)f1 =T'S™". (Use

D3DXMatrixInverse to do the calculations.)

Using D3DXMatrixInverse, we find that:

10 00 1000 000
(ST)_IZO*T‘OO ¢1_|0F 00 |0 100
0 0 1 of 0 0 1 of 0 010
2 3 1 0 0 01 -2 51 1

o O
- o O O

EN TN P

We see that indeed (ST)f1 =77's™",

5. Write the following linear combination as a vector-matrix multiplication:
V= 2(1, 2, 3)+—4(—5, 0, —1)+3(2, -2, —3) :

Observe:

¥ =2(1,2,3)+-4(-5,0,-1)+3(2,-2,-3)
(2,4,6)+(20,0,4)+(6,—6,-9)
(

28,-2,1)

By Equation 2.2, we can write this linear combination as a vector-matrix product:

12 3
v=[2,-4,3]-5 0 -1|=[28-21]
2 -2 -3
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6. Redo Exercise 11 from Chapter 1 using Equation 2.3.

The idea here is to just express the change of frame calculation by a matrix equation,
namely Equation 2.3. To change from frame 4 to frame B, we stick the frame 4 vectors,

with coordinates relative to frame B in homogeneous coordinates, #, v, w, and O into
the rows of a matrix C. Then, given the vector/point p, = (x, v, z, w) that specifies a
vector/point relative to a frame A4, we obtain the same vector/point, identified by
Dy = (x, v, z, w) relative to frame B, by performing the vector-matrix multiplication:
Dy =pP,C.

From Exercise 11 of Chapter 1, we have, in homogenous coordinates, the frame 4
vectors (relative to frame B):

i =(1/32,1/32,0,0), ¥ =(-1/42,1/42,0,0), #w=(0,0,1,0), O =(~6,2,0,1)

And, again in homogeneous coordinates, p, = (1, -2,0, 1) and g, = (1, 2,0, 0) .
Then the change of frame transformation may be computed as follows:

1 1 ]
z 700
[ ]% 5 00 (4,21 0,1)
p,=|1,-2,0,1f| v 2 = (=62 20 g
’ 0 0 1 0of ‘7"
-6 2 0 1]
£k 0
= L 00
5 V22 — (=L 3
QB_[LZ,O’O] - _5_5050
-6 2 0 1]
7. Show that
Uy Up Uz ([ Vir Vi Vi3 Uy U,y B
AB=\uy Uy Uy |[ Ve Vay Vs |=| Upowo [vcoll Veol2 ‘70013]= Uppo B |-
Uyp Uzp Uz [ V3 Vi Vi U3 U3 B

This result shows that a matrix-matrix multiplication can be viewed as several linear
combinations; specifically, in this case, the matrix product 4B is essentially the three

linear combinations u,, B, u, ,B,and u,  ,B.

rowl row?2
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One way to do this is to just do the matrix multiplication brute force, but it is
tedious even for small 3x3 matrices. To make things simpler, we will only calculate the
ith row of AB, where i is arbitrarily 1, 2, or 3.

(AB)mwi = |:umwi ’ Vcoll umwi ) vcolZ urowi ’ vcol3:|
Vl 1 V12 V13
= [uil Uy ui3] Var Voo V3

Vi Vi Vi3

Uy Up Uz (| Vir Vi Vi3 U, B
AB=|uy Uy Uy |[Vy Vi Vo3 |=|UppnB
Uyp Uz Uz [ V3 Vi Vi B

Chapter 3 Transformations; Planes

1. Show that the x-axis rotation transformation given by Equation 3.7 is a linear
transformation.

Recall R, (i) =(x, ycos@—zsinf, ysin@+zcosd). We must show that this

transformation satisfies the linearity condition, which is Equation 3.1. (To save
horizontal space, we will use column vector notation.)
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ou_+ fv,
R (aii+ fv) = (auy +ﬂvy)cost9—(auz +fv, )sin @

(auy +,va)sint9+(auz + v, )cos 6

ou_+ v,
=| au,cosf+ v, cosd—aqu, sinb— fv, sinb

| au,sin@+ fv, sin0+aqu_ cosd+ fv, cosd

ou_ Py,

=| au,cos—au_sinf |+| fv, cosd— fv, sin 0

|au,sin@+aqu_cost | | fv,sinf+ fv cosd

u X v)(

=a|u,cosf—u_sinf |+ | v, cosf—v,sind

u,sin@+u, cosd v, sin@+v,_ cosd

=aR, (ii)+BR, (V)
We have shown R, (i) to be a linear transformation.

2. Show that the identity function, defined by / (ﬁ ) =1, 1s a linear transformation, and

show that its matrix representation is the identity matrix.

We have [ (aii+ fv)=aii+ v =a-1(i)+ B-1(V), so the definition 3.1 of a linear

transformation is satisfied. By applying the linear transformation to each of the basis
vectors and then putting them into the rows of a matrix, we obtain the matrix
representation of the identity function:

~.l
N—

Il
O~
Il
o O
= =)
- O O

3. Show that the row vectors in the y-axis rotation matrix R, are orthonormal.

cosd 0 -—sind
Recall Ry = 0 1 0
sind 0 cosd
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To show the row vectors are orthonormal, we must show they all are of unit length and
that they are all mutually orthogonal. Let 7 =(cosé,0,—sin@), 7 =(0,1,0), and

= (sin 6,0, cos 0) be the row vectors of the matrix R,. By the well known trig identity

cos’ @ +sin* @ =1, we have:

7= Jcos? 0+0* +(~sin* 0) =1
] =v0* +1* +0* =1
||}73||:\/sin2 0+0>+cos’ 0 =1

So all the row vectors are of unit length. Now a straightforward application of the dot
product shows:

7’1"/2:0
hr=0
2"3:0

Thus the row vectors are all orthogonal to each other. We have shown the row vectors to
be orthonormal.

4. Let R, be the y-axis rotation matrix. Show that the transpose of this matrix is its

. . . T _ plp _
inverse; that is, show RR, =R,R =1I.

cosd@ 0 sind
RyT: 0 1 0

—sind 0 cosd

[cos® 0 —sind][ cos@ 0 sinéd] 1 00
Rny = 0 1 0 0 1 0 |=|0 1 0|=1
_sint9 0 cosd@ | _—sint9 0 cos 9_ 0 0 1

[ cos® 0 sin@l[cos@ 0 —sind] 1 00
RIR,=| 0 1 0 0 1 0 (=01 0|=1
_—sin@ 0 cos 9_ _siné’ 0 cosd@ | 0 0 1

The inverse is unique so we must have RyT = R;l .

5. In §3.1.4, we showed how the x-axis, y-axis, and z-axis rotation matrices could be
derived directly. Another perspective is to think of these rotation matrices as special
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cases of the arbitrary axis rotation matrix. Show that the arbitrary axis rotation matrix
reduces to the x-axis, y-axis, and z-axis rotation matrices when g equals, i, J,and k
(i.e., the standard basis vectors), respectively.

c+x2(1—c) xy(l—c)+zs xz(l—c)—ys
We have R, = xy(l—c)—zs c+y2(1—c) yz(l—c)+xs .
xz(l-c)+ys yz(1-¢)—xs c+z°(1-c)

Taking g = [ = (1, 0, O) , we have in the above matrix x =1, y =z =0, and matrix reduces

to:
c+1(1—c) 0 0 1 0 0
R. = 0 ¢ s|=|0 cos@ sinf |=R.
-5 c 0 —sin@ cosd

The process is analogous to obtain the y-axis, and z-axis rotation matrices.
6. Show that the translation matrix affects points, but not vectors.

Using the definition of matrix multiplication (Equation 2.1), we have:

1 0 0 0
01 0 0
[x,7,21] o 0 1 0
b, b, b 1

=[(6,3,21)(1,0,0,,), (%, 3,2,1)(0,1,0,5, ), (x,3,2,1)-(0,0,1,5.), (x,,2,1)-(0,0,0,1)
:[x+bx,y+by, Z+bz,1]

and
1 0 0 O
0 0O 1 0 0
o200l o 1 o
b, b, b I
:[(xayazao)'(laoaoabx)a(xayazao)'(oalaoaby)a(xay’Z’O)'(analabz):(x’yazao)'(oaoaoal)]
=[x,y,z,0]
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7. Verify that the given scaling matrix inverse is indeed the inverse of the scaling matrix;
that is, show, by directly doing the matrix multiplication, that SS™' =57'S =1 .

Similarly, verify that the given translation matrix inverse is indeed the inverse of the

translation matrix; that is, show, by directly doing the matrix multiplication, that

7' =7'T=1.
Sx

4 10

SS! =

0

0

[

0

SIS =

0

0
1 0 0
—_— 0 1 0
10 0 1
b, b, b,

1 0
o 0 1
10 0
b, D,

S O <

& |_

o o
= ===

—_ O

b

oS O

]

N

S

= )

o

—_ o O O

-0 O O

- o o O

& |_

S O

o)
[e)

|9
<

o O

S = )

o

o o o

- o O O

- o O O

- o o O

- o O O

=0 0 0|
0 = 0 0f |0
0o 0 = of |°
0 0 0 1] 0
=0 0 0|
{0 =0 0 |0
0o 0 = of |
_0001_0
1 0 0
0 1 0
0 0 1
\b.—=b, b,—b, b b,
1 0 0
0 1 0
0 0 1

S O = O

S O = O

- o O O

- o O O

S O = O

S O = O

8. Let p,=(0,1,0), p,=(-1,3,6),and p, =(8,5,3) be three points. Find the plane
these points define.

Two vectors on the plane are given by:

u=p —p, =(—1,3, 6)—(0, 1,0):(
V=D, =Dy 8

Now take the cross product to get a vector perpendicular to the plane (i.e., the plane

normal):

Frank Luna
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fi=iixv=(-1,2,6)x(84,3)=(~18,51,-20).

Moreover, d = —(ii- p,)=—51. Then the plane consists of all the points p =(x,y,z) that

satisfy the equation:
fi-(B—po)=7i-p—(ii-Py)=—-18x+51y-20z-51=0.

Remark: Because we didn’t normalize the plane normal, the value d is no longer the
signed distance from the origin, but some scaled distance.

9.Let 7= (%, %, %, - 5) be a plane. Define the locality of the following points relative

to the plane: (3\/5, 5\/§, O), (2\/5, \/g, 2«/§), and (\/3,—«/5, 0).

The plane equation is: fx + ﬁ y+ % z—5=0. Plugging these points into the left-hand
side of the equation gives:

(3«/§)+%(5\/§ +-=(0)—5=3= In front of the plane
(2\/§)+%(\/§)+ﬁ(2\/§)—5 =0 = On the plane

(V3)+ 5 (3) 3

s &k sk

0)—5 =—5=> In back of the plane

10. Let 7 = (%, %,%, —5) be a plane, and let F(t) =(—1,1,—1)+t(1,0,0) be aray. Find

the point at which the ray intersects the plane. Then write a short program using the
D3DXPlaneIntersectLine (see the SDK documentation for the prototype) function
to verify your answer.

F(5V3+1)=(=1,1,-1)+(5¥3 +1)(1,0,0)
(~1,1,-1)+(5v3+1,0,0)
(5v3,1,-1

We plug (5\/5 , 1,—1) into the plane equation to verify it indeed lies on the plane:
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5«/_ —5=0= On the plane

NCRAG i

The code is given by:

#include <d3dx9.h>
#include <iostream>
using namespace std;

// Overload the "<<" operators so that we can use cout to
// output D3DXVECTOR3 objects.

ostreamé& operator<<(ostreamé& os, D3DXVECTOR3& v)

{
0s << "(" K v.x K", "Kv.yKL", "XKv.z<<"";
return osS;

}

int main ()

{
D3DXVECTOR3 pO (-1.0f, 1.0f, -1.0f);
D3DXVECTOR3 u(l.0f, 0.0f, 0.0f);

// Construct plane by specifying its (A, B, C, D)
// components directly.

float s = 1.0f / sqgrtf(3);

D3DXPLANE plane(s, s, s, —-5.0f);

// Function expects a line segment and not a ray; so we just
// truncate our ray at p0O + 100*u to make a line segment.
D3DXVECTOR3 isect;

D3DXPlaneIntersectLine (&isect, &plane, &p0, &(pO0 + 100*u));

cout << isect << endl;

return 0;

The output is:

(8.66025, 1, -1)
Press any key to continue . . .

We note 5+/3 ~8.66025, so the computer result agrees with our calculation.
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